Planning for Water-Neutral Development

- Session #518
- S556
- Room 128, Phoenix Convention Center
- APA 2016 National Planning Conference
Today’s Panel

- Mary Ann Dickinson, Alliance for Water Efficiency
- Jim McElfish, Environmental Law Institute
- Katherine Baer, River Network
- Dwight Merriam, Robinson & Cole
- Bill Cesanek, CDM Smith
An initiative of

Net Blue: Planning for Water-Neutral Development
The Problem

- Many cities in North America are already challenged to meet their customer demands for water.
- Growing population and certain economic growth will place even more pressure.
- Current trends indicate the housing sector has gained significant momentum.
- The National Association of Home Builders documents a 100% increase in housing starts from 2010 to 2015.
- Offsets can help.
What is a Water Demand Offset?

- Allow growth without increasing system-wide water consumption across a community or a water supply service area.
- Achieved through a combination of on-site water efficiency and off-site water efficiency.
- Reduces or completely eliminates impact of new development on water supply.
- Can help avoid building moratoriums in resource-constrained communities.
- Not a new concept.
Reviewing What Has Been Done

- AWE conducted research related to water demand offset policies
 - Reviewed terminology
 - Reviewed literature
 - Reviewed existing and past policies
- Provided basis for the development of a model ordinance
- Download at www.a4we.org
Net Blue: Water-Neutral Growth

- 3-year project to promote sustainable communities
- Model ordinance communities can tailor to create a water demand offset approach
- Will work with 7 partner cities to pilot approach
- Partners: Environmental Law Institute and River Network
Project Advisory Committee

- Dave Anderson (Planning & Zoning)
- Jacob Atalla (Builder)
- Sarah Bates (Water law)
- Bill Cesanek (APA Water Task Force)
- Doug Farr (Sustainability architect)
- Kyle Harwood (Offset ordinance attorney)
- Paula Kehoe (City)
- Cooper Martin (League of Cities)
- Dwight Merriam (Developer attorney)
- Brian Richter (Environmental expert)
Project Timeline

- 5/2015: PAC and Partner Cities selected
- 6/2015: Legal framework developed
- 7/2015: PAC Meeting
- 9/2015-12/2015: Offset methodology to be developed, text of ordinance to be written
- 2/2016: PAC Meeting to review draft ordinance and methodology
- 4/2016: Net Blue at APA conference
- 9/2016: PAC Meeting to review final work products
- 2017: Partner City implementation
The Model Ordinance Tool
Approach

- Reviewed literature and identified potential water constraint scenarios for which the ordinance may be used
- Dissected existing water offset ordinances
- Designed framework for ordinance
- Drafted a model ordinance tool with:
 - Elements of existing water offset ordinances
 - Elements drawn from other laws
 - The results of AWE’s water offset work
The Draft Ordinance Tool

- Built an ordinance-development tool, not a traditional model ordinance, because:
 - Variety of settings: constraints, governing entities, enabling laws
 - We anticipate a variety of users (not just lawyers)
 - It is intended to assist with outreach
- This tool is intended to help the users identify and think about critical issues
Organization of the Ordinance

1. Findings

2. Purpose

3. Authority

4. Requirement and Applicability

5. Definitions
Organization of the Ordinance

6. Determining the Offset
 - Projecting the Net Increase in Annual Water Demand
 - Determining the Amount of Water that Must Be Offset
 - Identifying and Implementing the Offsets

7. Compliance with the Offset
 - Verification
 - Monitoring
 - Enforcement
 - In-Lieu Fee
Organization of the Ordinance

8. Fees
9. Variances
10. Appeals
11. Severability
12. Consistency with Other Laws
13. Effective Date
Example Sections of the Tool
The purpose of this ordinance is to:

☐ Protect and provide for the public health, safety, and general welfare.
☐ Set and meet sustainability goals.
☐ Manage the addition of new demand for water uses in city/county/district/region, to ensure that
 ☐ Demand for water does not exceed available current or future supply
 ☐ Demand for water does not exceed the sustainable yield of the source
 ☐ Demands on water infrastructure do not exceed its capacity or impair its function
☐ Ensure a reasonable and orderly process and pace of making water supply and/or infrastructure capacity available to new users.

☐ Minimize the adverse effects on the community of limitations on the city/county/district/region’s water supply and/or infrastructure.

☐ Manage water and/or infrastructure to better satisfy both present and future human needs.

☐ Manage water to better protect fish, wildlife, and recreation, now and in the future.

☐ Comply with the specified plan(s) by identified means.
☐ Retain groundwater aquifers at levels sufficient to protect against contamination from saltwater intrusion.
☐ While preserving water resources, allow reasonable time to complete necessary studies and reports for amendments to
 ☐ The general plan
 ☐ Zoning ordinance
 ☐ Insert other
☐ Other
Definitions

“Application” – The formal request for:

☐ A building permit ☐ An intent to serve letter
☐ Subdivision approval ☐ A water hookup
☐ Site plan approval ☐ Water service via annexation
☐ A grading permit ☐ A secondary plumbing permit
☐ Rezoning approval ☐ A certificate of occupancy
☐ A remodel approval ☐ Insert other
The **identified government entity** shall project the net increase in annual water demand that will result from the proposed construction. This projection will serve as the basis for determining the amount of water that will need to be offset via off-site activities. The net demand increase projection is comprised of three calculations:

- The total projected annual water demand of the property, once construction is completed;
- The existing annual water demand of the property, if applicable; and
- The amount of water, if any, from alternative sources that will supply the development.
Projecting Total Annual Water Demand

☐ If the total annual water demand will be projected on a case-by-case basis:

☐ The identified government entity will project the total annual water demand resulting from the proposed project on a case-by-case basis. Considerations in making this projection shall include, but not be limited to, the number and flow volumes of fixtures, appliances, industrial machinery, and irrigation systems as well as their estimated frequency of use.

☐ The applicant shall project the total annual water demand of the proposed project. Considerations in making this projection shall include, but not be limited to, the number and flow volumes of fixtures, appliances, industrial machinery, and irrigation systems as well as their estimated frequency of use. The identified government entity shall review the applicant’s projection. The total annual water demand of the property is not deemed to be projected until the identified government entity approves of the projection.
If default projections of total annual water demand will be available for some types of development:

If the identified government entity has developed a default projection of total annual water demand for a development with the general characteristics of the proposed project, the default projection shall serve as the total annual water demand figure for the property, unless challenged by the applicant. The identified government entity shall periodically update the table of total annual water demand default projections.
Projecting the Net Increase in Annual Water Demand (Redevelopment)

☐ If the ordinance will apply to redevelopment and/or remodeling:

When redevelopment and/or remodeling is proposed, the net increase in annual water demand resulting from the proposed construction shall be the total annual projected water demand for the development less the property’s existing annual water demand on the source at issue. The identified government entity will determine the existing average annual water demand of the property on the source at issue.

☐ To be the average annual use in the two years of highest water use in the preceding ten years
☐ To be the amount of water previously offset, if applicable
☐ Through an estimate based on the flow rates and flush volumes of existing fixtures
☐ Based on the average annual use in the two years of highest water use in the preceding ten years, the amount of water previously offset, or the flow rates and flush volumes of existing fixtures, whichever is feasible or produces a higher result

The information necessary to calculate the existing annual water demand of the property on the source at issue shall be included in the application.
Determining the Amount of Water that Must Be Offset

If the identified government entity determines that the proposed construction likely will result in a net increase in water demand, it will determine the amount of water that will need to be offset. The identified government entity shall multiply the projected net increase in annual water demand for the proposed construction by X percent, in light of the current and projected water supply and/or infrastructure capacity and

☐ Allowing for a margin of safety in calculation
☐ Considering the water needed for community health and safety purposes, such as firefighting and fire hydrant testing
☐ Considering system losses and maintenance uses
☐ Insert other

The resulting figure is the amount of water that must be offset via off-site activities through the methods below.
Verification of Offset

Upon completion of all retrofit work and other projects necessary to meet the offset requirement, the applicant shall submit a list of the tasks completed [and the projected efficiency results of each] to the identified government entity. The identified government entity has the authority to verify that the fixture and appliance replacements claimed by the applicant to have been completed were completed and that any other offset projects claimed to have been completed not only were completed but have the efficiency results claimed.

Inspections may occur before, during, and after the fixture and appliance replacements and implementation of other projects.
James McElfish
Environmental Law Institute
1730 M Street, N.W., Suite 700
Washington, DC 20036
mcelfish@eli.org
(202) 939-3840

http://www.allianceforwaterefficiency.org/net-blue.aspx
Offset Components

- A condition that triggers the requirement for a water demand offset (i.e., new development and/or expanded use of an existing connection)

- Water demand projection of new development
 - On-site efficiency
 - Offset ratio (percent of demand that is required to be offset)
Calculating Off-site Offsets

- Predetermined based on credits or equivalency units published as part of the ordinance; or
- “As determined by the Water Department”
Offset Considerations

- Plumbing code interaction
- Reliability and certainty of estimates
- Seasonality
- Useful Life
What We Have Now

- A draft workbook to help communities evaluate and select off-site offsets for individual development projects.
Workbook Components

- New demand information
- Offset strategy evaluation worksheet
- Selected offsets worksheet
- Supplemental worksheets
 - Residential inefficient toilet stock estimator
 - Rainwater harvesting information and resources
 - More to come...
Offset Strategy Worksheet

This worksheet can be used to evaluate and select a suite of measures to offset the demand of new or expanded water use. It contains example offset strategies related to indoor water fixture and appliance replacements and retrofits. Cooling tower retrofits are also included. Additionally, the user can enter custom measures. Example savings estimates are provided for the included offsets, but the user is encouraged to evaluate savings of offset strategies in relation to their service area.

User inputs and selections are required in cells with a white background. Green cells do not require any input or selection. Selecting "Yes" in Column J will include the offset measure in the Selected Offsets worksheet, as long as Column I is populated with a savings estimate value.

Step 1: Enter Information about New or Expanded Water Use

<table>
<thead>
<tr>
<th>Projected Water Demand of New or Expanded Use</th>
<th>Gallons per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>430,000.09 Gallons per Year</td>
<td></td>
</tr>
</tbody>
</table>

Select Gallons, Million Gallons, or Acre-Feet per Year

<table>
<thead>
<tr>
<th>Total Offset Requirement for New or Expanded Water Use</th>
<th>Gallons per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>900,000.09 Gallons per Year</td>
<td></td>
</tr>
</tbody>
</table>

Step 2: EnterPersons Per Household for the Service Area (used to generate savings for toilet replacements)

<table>
<thead>
<tr>
<th>Service Area Average Persons Per Household Single-Family</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Area Average Persons Per Household Multifamily</td>
<td>2</td>
</tr>
</tbody>
</table>

Step 3: Define and Select Water Demand Offset Strategies

<table>
<thead>
<tr>
<th>Offset Strategy</th>
<th>Example Savings Estimate Per Replacement/Retrofit in Gallons Per Year*</th>
<th>User-Specified Savings Estimate Per Replacement/Retrofit in Gallons Per Year</th>
<th>Approximate Number of Replacements/Retrofits to Meet Offset if Selected Strategy?</th>
<th>Related Plumbing Code?</th>
<th>Useful Life</th>
<th>Seasonality of Water Savings</th>
<th>Percent of Total Offset Requirement per Replacement/Retrofit</th>
<th>Include in Selected Offset Table?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Family High-Efficiency Toilet Replacements</td>
<td>9,561</td>
<td>9,500</td>
<td>139</td>
<td>Yes</td>
<td>Theoretically Permanent</td>
<td>Even throughout year</td>
<td>1%</td>
<td>Yes</td>
</tr>
<tr>
<td>Multifamily High-Efficiency Toilet Replacements</td>
<td>16,477</td>
<td>16,000</td>
<td>113</td>
<td>Yes</td>
<td>Theoretically Permanent</td>
<td>Even throughout year</td>
<td>2%</td>
<td>Yes</td>
</tr>
<tr>
<td>Showerhead Replacement Single-Family</td>
<td>2,062</td>
<td>2,062</td>
<td>872</td>
<td>Yes</td>
<td>Theoretically Permanent</td>
<td>Even throughout year</td>
<td>0%</td>
<td>No</td>
</tr>
<tr>
<td>Showerhead Replacement Multifamily</td>
<td>1,898</td>
<td>1,898</td>
<td>948</td>
<td>Yes</td>
<td>Theoretically Permanent</td>
<td>Even throughout year</td>
<td>0%</td>
<td>No</td>
</tr>
<tr>
<td>Single-Family Clothes Washer Replacement</td>
<td>7,043</td>
<td>7,043</td>
<td>256</td>
<td>Yes</td>
<td>Theoretically Permanent</td>
<td>Even throughout year</td>
<td>1%</td>
<td>Yes</td>
</tr>
<tr>
<td>Multifamily Clothes Washer Replacement</td>
<td>25,310</td>
<td>25,310</td>
<td>71</td>
<td>Yes</td>
<td>Theoretically Permanent</td>
<td>Even throughout year</td>
<td>3%</td>
<td>No</td>
</tr>
<tr>
<td>Cistern Replacements or Retrofits</td>
<td>6,206</td>
<td>6,206</td>
<td>290</td>
<td>Yes</td>
<td>Theoretically Permanent</td>
<td>Even throughout year</td>
<td>1%</td>
<td>No</td>
</tr>
<tr>
<td>MultiHigh-Efficiency Toilet Replacements</td>
<td>13,020</td>
<td>13,020</td>
<td>138</td>
<td>Yes</td>
<td>Theoretically Permanent</td>
<td>Even throughout year</td>
<td>1%</td>
<td>Yes</td>
</tr>
<tr>
<td>Laundromat Clothes Washer Replacements</td>
<td>31,435</td>
<td>31,435</td>
<td>57</td>
<td>Yes</td>
<td>Theoretically Permanent</td>
<td>Even throughout year</td>
<td>3%</td>
<td>Yes</td>
</tr>
<tr>
<td>Commercial Dishwasher Replacements</td>
<td>57,757</td>
<td>57,757</td>
<td>31</td>
<td>No</td>
<td>20 Years</td>
<td>Even throughout year</td>
<td>6%</td>
<td>No</td>
</tr>
<tr>
<td>Pre-Rinse Spray Valve Replacements</td>
<td>28,285</td>
<td>28,285</td>
<td>64</td>
<td>Yes</td>
<td>Theoretically Permanent</td>
<td>Even throughout year</td>
<td>3%</td>
<td>No</td>
</tr>
<tr>
<td>Commercial Food Steamer Installation</td>
<td>81,500</td>
<td>81,500</td>
<td>22</td>
<td>No</td>
<td>10 Years</td>
<td>Even throughout year</td>
<td>9%</td>
<td>Yes</td>
</tr>
<tr>
<td>Cooling Tower Retrofits</td>
<td>209,889</td>
<td>209,889</td>
<td>8.58</td>
<td>No</td>
<td>5 Years</td>
<td>Higher during peak season</td>
<td>23%</td>
<td>No</td>
</tr>
</tbody>
</table>

*Example Savings Estimate Per Replacement/Retrofit in Gallons Per Year:

- N/A (Not Applicable)
Selected Offsets

This worksheet contains an auto-populating table based on user selections made in the Offset Strategies worksheet. The table can be populated using the "Update Selected Offsets Table" button to the right of the Net Blue logo. The user manually enters the implementation value (e.g., number of toilet replacements) in Column D. The "Percent of Total Offset Requirement" column is automatically calculated after the user specifies implementation. If changes are made in the Offset Strategies worksheet, the user must update the selected offsets table using the "Update Selected Offsets Table" button.

<table>
<thead>
<tr>
<th>Offset Strategy</th>
<th>Gallons Saved per Unit</th>
<th>Number to be Implemented</th>
<th>Percent of Total Offset Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Family High-Efficiency Toilet Replacements</td>
<td>9,500</td>
<td>5</td>
<td>5%</td>
</tr>
<tr>
<td>Multifamily High-Efficiency Toilet Replacements</td>
<td>16,000</td>
<td>5</td>
<td>9%</td>
</tr>
<tr>
<td>Single-Family Clothes Washer Replacement</td>
<td>7,043</td>
<td>5</td>
<td>4%</td>
</tr>
<tr>
<td>Multifamily Clothes Washer Replacement</td>
<td>25,310</td>
<td>5</td>
<td>14%</td>
</tr>
<tr>
<td>CLL High-Efficiency Toilet Replacements</td>
<td>13,020</td>
<td>7</td>
<td>10%</td>
</tr>
<tr>
<td>Laundromat Clothes Washer Replacements</td>
<td>91,435</td>
<td>5</td>
<td>17%</td>
</tr>
<tr>
<td>Pre-Rinse Spray Valve Replacements</td>
<td>28,285</td>
<td>10</td>
<td>31%</td>
</tr>
<tr>
<td>Commercial Food Steamer Installation</td>
<td>81,500</td>
<td>1</td>
<td>9%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>
Inefficient Toilet Stock Estimator

Residential Inefficient Toilet Stock Estimate Worksheet

This worksheet can be used to create a general estimate of the stock of residential inefficient toilets (assumed flush volume 3.5 gallons or more) in a given service area if such an estimate does not already exist. The assumptions are based on natural replacement resulting from the Energy Policy Act of 1992. The Energy Policy Act of 1992 took effect in 1994 and required 1.6 gpf toilets for all point of sale and installations. California and Texas required 1.6 gpf toilets beginning in 1992. Utility implemented toilet replacement programs could be factored into the toilet fixture stock estimates as well. The estimates for single-family and multifamily are generated in rows 24 and 25 of 'Column C.'

<table>
<thead>
<tr>
<th>Enter Current Year</th>
<th>Assumed Annual Toilet Replacement Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Community Located in California or Texas?</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Single-Family Housing Units Built before 1994</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifamily Housing Units Built before 1994</td>
<td>50,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Full Bathrooms Per Household - Single-Family</th>
<th>1.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half Bathrooms Per Household - Single-Family</td>
<td>0.75</td>
</tr>
<tr>
<td>Full Bathrooms Per Household - Multifamily</td>
<td>1.00</td>
</tr>
<tr>
<td>Half Bathrooms Per Household - Multifamily</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Inefficient Single-Family Toilet Stock</th>
<th>101,840</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Inefficient Multifamily Toilet Stock</td>
<td>25,460</td>
</tr>
</tbody>
</table>

Bathroom Per Household Table

If bathrooms per household are unknown, the Bathroom Per Household Table provides estimates for many Standard Metropolitan Statistical Areas.
Rainwater harvesting projects vary greatly in terms of scale, from the household rain barrel to large installations. It is difficult to estimate broadly applicable savings for rainwater harvesting projects. Each should be evaluated individually based on local weather conditions, and the project scale and specifications. Additionally, local laws and regulations vary throughout the U.S. This worksheet contains information and links to resources regarding rainwater harvesting. It also addresses the potential downfall of basing estimates on historical averages.

There are several key variables to consider when pursuing rainwater capture as a potable water demand offset. These include but may not be limited to:
- Climate (Rainfall and Evapotranspiration)
- Catchment Area
- Collection Efficiency
- Storage Capacity
- End Use of Captured Rainwater
- Weather Variability and Uncertainty

Rainwater harvesting calculators can be used to estimate rainwater capture quantities and help determine the appropriate size of cisterns. Below are examples:

Weather variability is sometimes overlooked when planning rainwater harvesting projects, as many calculations rely on historical average, or median, monthly rainfall values. This ignores times of low (or zero) rainfall and may give too much weight to historical months with abnormally high levels of precipitation. For example purposes, the below graph illustrates historical precipitation data from 1980-2014 for four cities in the U.S., and compares it to average and median rainfall values. The city can be selected from the drop down menu.

The table to the right of the charts lists summary statistics related to the precipitation data including, minimum, maximum, mean, and median values. The standard deviation is also included. The last row of the table shows the percent of readings for a given month that were equal to, or exceeded, the average value from 1980-2014.
Weather Variability

Historical Precipitation
1980-2014 With Mean and Median

Atlanta, GA - 1980 to 2014 Precipitation Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>0.84</td>
<td>1.06</td>
<td>1.04</td>
<td>0.49</td>
<td>1.23</td>
<td>0.17</td>
<td>0.37</td>
<td>0.77</td>
<td>0.04</td>
<td>0.26</td>
<td>0.87</td>
<td>1.21</td>
</tr>
<tr>
<td>Max</td>
<td>8.46</td>
<td>5.75</td>
<td>11.67</td>
<td>9.62</td>
<td>5.93</td>
<td>5.99</td>
<td>17.72</td>
<td>8.66</td>
<td>13.65</td>
<td>11.64</td>
<td>10.05</td>
<td>5.27</td>
</tr>
<tr>
<td>Mean</td>
<td>4.24</td>
<td>4.59</td>
<td>5.02</td>
<td>3.41</td>
<td>3.78</td>
<td>4.07</td>
<td>5.09</td>
<td>5.85</td>
<td>4.17</td>
<td>4.75</td>
<td>3.94</td>
<td>4.05</td>
</tr>
<tr>
<td>Median</td>
<td>4.04</td>
<td>4.25</td>
<td>4.59</td>
<td>3.00</td>
<td>2.95</td>
<td>3.66</td>
<td>3.53</td>
<td>3.89</td>
<td>3.31</td>
<td>2.57</td>
<td>3.34</td>
<td>3.87</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.67</td>
<td>1.87</td>
<td>2.37</td>
<td>1.61</td>
<td>2.08</td>
<td>2.55</td>
<td>3.77</td>
<td>2.03</td>
<td>3.09</td>
<td>2.35</td>
<td>2.05</td>
<td>2.91</td>
</tr>
<tr>
<td>% of Months that Met or Exceeded Mean (1980-2014)</td>
<td>51%</td>
<td>43%</td>
<td>49%</td>
<td>40%</td>
<td>37%</td>
<td>48%</td>
<td>34%</td>
<td>51%</td>
<td>43%</td>
<td>40%</td>
<td>46%</td>
<td>49%</td>
</tr>
</tbody>
</table>
Mary Ann Dickinson
Alliance for Water Efficiency
33 North LaSalle, Suite 2275
Chicago, IL 60602
maryann@a4we.org
(773) 360-5100

http://www.allianceforwaterefficiency.org/net-blue.aspx
Engaging Communities in the Net Blue Project

Katherine Baer
River Network

http://www.allianceforwaterefficiency.org/net-blue.aspx
River Network empowers and unites people and communities to protect and restore rivers and other waters that sustain all life. We envision a future of clean and ample water for people and nature, where local caretakers are well-equipped, effective and courageous champions for our rivers.
Community Engagement

- Broad outreach survey
- Partner communities
 - Selection
 - In-depth interviews
 - Community meetings
- National roll-out
Broad outreach survey

Are you aware of an ordinance of this nature in a nearby community?
Broad outreach survey

Do you believe your community would benefit from a Net Blue type ordinance?
Partner Communities

- Selection – looking for variety:
 - Region
 - Size
 - Water law
 - Underlying constraints
 - Governance

- Interest!
Partner Communities:
In-depth interviews – to inform ordinance development

- Community & environment
- Regulatory regime & funding
- Community leadership & politics
Partner Communities:
In-person community meetings – feedback and refining ordinance

Input from:

- Water system
- Municipal and private planners
- Watershed and community groups
- Developers
- Local leaders
- Others as identified
Partner Communities:
In-person community meetings – feedback and refining ordinance

Input on:

- Model ordinance
- How to make it happen
- Offset methodology
Nationwide roll out

- Reengaging with partner communities

Outreach
- Webinars
- Articles
- Conferences
Katherine Baer
River Network
kbaer@rivernetwork.org

http://www.allianceforwaterefficiency.org/net-blue.aspx
What Developers Want

Dwight Merriam, FAICP
Robinson & Cole, LLP

An initiative of
Certainty

They must be able to calculate what the cost of the offsets will be to them early on in the process, even sometimes before they enter into a contract to purchase property.
They must be able to move their development applications along with all deliberate speed, which suggests the need for regulations that are virtually self-implementing.
Equity

Developers want to be treated equitably, the same as every other developer of any new project and without being required to make up for any historical underinvestment in water infrastructure.

133 S. Ct. 2586, 570 US __, (2013)
Developers want a fair and transparent process with the right to an expeditious and inexpensive local administrative appeal to challenge any offset that they believe is unreasonable.

“Fairness is what justice really is.”

— Potter Stewart, Supreme Court Justice (1915-1985)
NET BLUE Ordinance
Alliance for Water Efficiency
33 North LaSalle, Suite 2275
Chicago, IL 60602
maryann@a4we.org
(773) 360-5100

http://www.allianceforwaterefficiency.org/net-blue.aspx